INSIDE THE

APPLE lic

Gary 8. Little

Brad

Inside the

Apple //c

Gary B. Little

Brady Communications Company, Inc.
A Simon & Schuster Publishing Company

New York, NY 10020

Inside the Apple Ilc.

Copyright © 1985 by Brady Communications Company, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying and
recording, or by any information storage and retrieval system, without permission in
writing from the publisher. For information, address Brady Communications Com-
pany, Inc., A Simon & Schuster Publishing Company, 1230 Avenue of the Americas,
New York, NY 10020. '

Library of Congress Cataloging in Publication Data

Little, Gary B., 1954—
Inside the Apple Ilc.

On t.p. IIc appears as //c.

Includes bibliographies and index.

1. Apple IIc (Computer) 1. Title: Inside the Apple
2c. II. Title: Inside the Apple two ¢. III. Title.
QA76.8.A662251L57 1985 001.64 84-27419

ISBN 0-89303-5kL4-5

Printed in the United States of America

85 86 87 88 89 90 91 92 93 94 95 2345678910

Production Editor/Text Designer: Michael J. Rogers
Art Director: Don Sellers

Assistant Art Director: Bernard Vervin

Cover Photography: George Dodson

Manufacturing Director: John A. Komsa

Copy Editor: Rita Progler

Typesetting: Automated Graphic Systems, White Plains, MD

Printing: R. R. Donnelley & Sons Co., Harrisonburg, VA

Typefaces: Helvetica (display), Aster (text), and Universal Monotype #3 H-P (computer programs)

To my wife, Pamela

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts in pre-
paring this book and the programs contained in it. These efforts include the
development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any
event for incidental or consequential damages in connection with, or arising
out of, the furnishing, performance, or use of these programs.

Note to Authors

Have you written a book related to personal computers? Do you have an
idea for developing such a project? If so, we would like to hear from you.
Brady produces a complete range of books for the personal computer market.
Weinvite you to write to Editorial Dept., Brady Communications Co., A Simon
& Schuster Publishing Company, 1230 Avenue of the Americas, New York,
NY 10020.

Trademarks of Material Mentioned in This Text

Apple//e, Applesoft, Apple II, Apple IT Plus, Apple //c, Apple I, Integer BASIC,
DOS 3.3, Lisa, Macintosh, and ProDOS are trademarks of Apple Computer,
Inc.

Contents

Preface / xiii

1 An Introduction to Apple and the Apple //c / 1
A Condensed History of Apple Computer, Inc. / 1
Hardware and the Apple //c / 7
Learning the Fundamentals / 8
What Won'’t Be Covered / 9
Using the Optional Diskette / 9
Further Reading for Chapter 1 / 10

2 The 65C02 Microprocessor / 11
Important 65C02 Concepts / 12
Zero Page and the Stack / 12
65C02 Instruction Set / 13
65C02 Registers / 21
The Accumulator—A / 21
The Index Registers—X and Y / 22
The Processor Status Register—P / 23
Carry Flag (C) / 23
Zero Flag (Z) / 24
Interrupt Disable Flag (I) / 24
Decimal Mode Flag (D) / 25
Break Flag (B) / 25
Overflow Flag (V) / 25
Negative Flag (N) / 26
The Stack Pointer—S / 26
The Program Counter—PC / 27
65C02 Addressing Modes / 27
Immediate / 28
Absolute / 29
Accumulator / 30
Implied / 30
Zero-Page Indexed Indirect / 30
Zero-Page Indirect / 31
Indirect Indexed / 31
Absolute Indexed / 32
Relative / 32
Absolute Indirect / 33
Absolute Indexed Indirect / 33
65C02 Input/Output Handling / 33
65C02 Interrupts / 34
Reset Interrupt / 36

vi [_] Inside the Apple //c

Interrupt Request (IRQ) / 36
The BRK Instruction / 37
The 65C02 Memory Space on the //c / 38
RAM Memory / 38
Input/Output (I/O) Memory / 41
ROM Memory / 42
Further Reading for Chapter 2 / 42

3 The System Monitor / 45
The System Monitor Commands / 46

The DISPLAY Command : Displaying the Contents of Memory / 46

The STORE Command : Changing the Contents of Memory / 49

The MOVE Command : Copying the Contents of Memory / 51

The VERIFY Command : Comparing Ranges of Memory / 53

The EXAMINE Command : Examining the 65C02’s Registers / 53

The GO Command : Running a Program / 54

The LIST Command : Disassembling Assembly-Language
Programs / 55

The NORMAL and INVERSE Commands: Changing Video Display

Modes / 57
The ADD and SUBTRACT Commands : Simple Arithmetic / 57
The BASIC and CONTINUE BASIC Commands : Entering
Applesoft / 57
The USER Command : User-Defined Command / 58

The KEYBOARD and PRINTER Commands : Redirecting Input and

Output / 59
Multiple Commands on One Line / 61
System Monitor Subroutines / 61
Further Reading for Chapter 3 / 65

4 Applesoft BASIC / 67
Applesoft Memory Map / 68
Tokenization of Applesoft Programs / 73
Keyword Tokens / 74
Storage of Applesoft Variables / 77
Storage of Simple Variables / 78
The Name Header / 79
The Data Field / 80
End of Simple Variables / 82
Storage of Array Variables / 83
The Name Header / 83
Dimensioning Bytes / 83
The Data Field / 85
End of Array Variables / 85
Representation of Integer Numbers / 85
Representation of Real Numbers / 87

Contents [___| wvii

Number Theory / 87
Binary Floating-Point Format / 87
How an Applesoft Program Runs / 89
The CHARGET Subroutine / 91
Changing Program Flow / 93
Finding Line Numbers / 93
Linking Applesoft to Assembly-Language Programs / 94
The CALL Command / 95
The & Command / 95
The USR Function / 96
Applesoft’s Built-In Subroutines / 97
Using Applesoft’s Built-In Subroutines / 104
Locating Variables / 104
Evaluating Formulas / 108
Converting Numbers / 108
Further Reading for Chapter 4 / 112

5 The ProDOS Disk Operating System / 115
Formatting Diskettes / 116
ProDOS Memory Map / 116
ProDOS Page 3 Vectors / 118
Filenames and Pathnames / 118
BASIC.SYSTEM Commands / 121
File Management Commands / 122
File Loading and Execution Commands / 123
File Input/Qutput Commands / 124
Miscellaneous Commands / 125
ProDOS File Storage / 126
Volume Bit Map / 126
Diskette Directory / 127
“Protecting”’ Files / 130
Storing File Data / 131
MLI—Accessing the Diskette Directly / 132
READ.BLOCK Program / 134
Further Reading for Chapter 5 / 140

6 Character Input and the Keyboard / 141
Standard Character Input Subroutines / 145
Reading One Character / 146
RDKEY ($FDOC) / 146
Keyboard Input / 148
Escape Sequences / 148
RDCHAR ($FD35) and ESCRDKEY ($CCED) / 150
Reading a Line of Characters / 150
Changing Input Devices : The Input Link / 152
How About Output? / 153

vili [__] Inside the Apple //c

Designing a KSW Input Subroutine / 153
Replacing the Keyboard Input Subroutine / 153
ProDOS and the Input Link / 154
The Keyboard / 157
- Encoding of Keyboard Characters / 157
Special Keys / 159
The “Apple” Keys / 159
Keyboard I/O Locations / 160
Modifying the Keyboard Input Subroutine / 164
Keyboard Auto-Repeat / 168
Resetting the Apple //c / 173
Special RESET Procedure / 173
Trapping ‘“Soft” RESETs / 174
Trapping RESET from Assembly Language / 175
Trapping RESET from Applesoft / 176
Further Reading for Chapter 6 / 181

7 Character and Graphic Output and Video Display Modes / 183
Text Mode / 184
The 80/40 Switch / 185
Turning on the Text Display / 185
Text Mode Memory Mapping / 188
40-Column Text Mode / 189
80-Column Text Mode / 191
Using Page2 of Text / 192
Video Display Attributes: Normal, Inverse, Flash / 194
MouseText / 196
Standard Character Output Subroutines / 199
Video Qutput / 200
Video Screen Windowing / 202
How COUT1 and C3COUT]1 Set the Video Attribute / 203
Changing Output Devices : The OUTPUT Link / 205
Designing a CSW Output Subroutine / 206
Replacing the Video Output Subroutine / 206
ProDOS and the Output Link / 206
Low-Resolution Graphics Mode / 207
Turning on the Low-Resolution Graphics Display / 208
Low-Resolution Graphics Screen Memory Mapping / 209
Low-Resolution Graphics Colors / 209
Double-Width Low-Resolution Graphics / 210
Turning on Double-Width Low-Resolution Graphics / 210
Double-Width Low-Resolution Graphics Screen Memory
Mapping / 212
Double-Width Low-Resolution Graphics Colors / 212
Built-In Support for Low-Resolution Graphics / 213
High-Resolution Graphics Mode / 214

Contents [| ix

Turning on the High-Resolution Graphics Display / 215
High-Resolution Graphics Screen Memory Mapping / 217
High-Resolution Graphics Colors / 219
Animation with High-Resolution Graphics / 220
Double-Width High-Resolution Graphics / 221

Turning on Double-Width High-Resolution Graphics / 222

Double-Width High-Resolution Graphics Screen Memory

Mapping / 222

Double-Width High-Resolution Graphics Colors / 223

Built-In Support for High-Resolution Graphics / 223
Further Reading for Chapter 7 / 225

8 Memory Management / 229
16K Bank-Switched RAM Areas / 230
Using Bank-Switched RAM / 231
Reading the Status of Bank-Switched RAM Soft Switches / 232
Auxiliary Bank-Switched RAM / 234
Playing with Bank-Switched RAM / 235
Bank-Switched RAM and ProDOS / 236
Auxiliary RAM Memory Area / 236
Using Auxiliary Memory / 237
The ALTZP Switch / 237
The RAMRD and RAMWRT Switches / 239
Auxiliary Memory Support Subroutines / 241
AUXMOVE ($C311)—Transferring data to and from auxiliary
memory / 241
XFER ($C314)—Transferring control to a program from main or
~ auxiliary memory / 244
Running Co-Resident Programs / 245
Initialization of the Auxiliary Stack / 251
Using CONCURRENT / 251
Limitations of CONCURRENT / 252
Further Reading for Chapter 8 / 253

9 The Speaker / 255
Generating Musical Notes / 255
Generating Music / 259
Further Reading for Chapter 9 / 263

10 Mouse and Game Controller Input / 265
The Apple Mouse / 265
How the Mouse Works / 266
Mouse Operating Modes / 267
Passive (Transparent) Mode / 267
Movement Interrupt Mode / 268
Button Interrupt Mode / 268

x [Inside the Apple //c

Movement or Button Interrupt Mode / 268
Vertical Blanking Interrupts / 268
The Mouse and Applesoft / 269
Turning the Mouse On / 269
Turning the Mouse Off / 271
Reading the Mouse / 271
A Sample Program / 272
The Mouse and Assembly Language / 273
Mouse Screen Hole Locations / 274
Using the Mouse Subroutines / 275
Comparing the //c Mouse with the //e Mouse / 275
The Mouse Subroutines / 278
A Sample Program / 280
The Mouse as a Joystick / 280
Mouse I/0 Locations / 285
The Game Controller Interface / 288
Game Controller Inputs / 289
Push Button Inputs / 293
Further Reading for Chapter 10 / 296

11 The Serial Interface Ports / 299
Serial Transmission of Data / 299
The RS-232-C Standard / 300
Data Communications Protocols for Serial
Communications / 300
Start Bit / 301
Data Bits / 301
Parity Bit / 302
Stop Bits / 302
Data Transmission Errors / 303
The 6551 ACIA / 303 _
6551 Control Register / 306
6551 Command Register / 307
6551 Status Register / 308
6551 Data Register / 310
Configuring the Serial Ports / 310
Characteristics of a Printer Port / 311
Characteristics of a Communications Port / 313
Terminal Mode / 314
Changlng the Default Configuration / 316
6551 Interrupt Handling / 318
6551 Transmitter Interrupts / 319
6551 Receiver Interrupts / 319
6551 Keyboard (DSR port 2) Interrupts / 321
6551 External (DSR port 1) Interrupts / 323
Further Reading for Chapter 11 / 324

Contents [| xi

Appendix | / 325
American National Standard Code for Information Interchange (ASCII)
Character Codes

Appendix II / 331
65C02 Instruction Set and Cycle Times

Appendix lll / 337
Apple //c Soft Switch, Status, and I/O Port Locations / 337
I/0 Port Locations / 343

Appendix IV / 347
Apple //c Page 3 Vectors

Appendix V For Beginners Only / 349
Numbering Systems / 349
Bit Numbering and “Significance” / 350
Pointers and Vectors / 351
Control Characters / 351
65C02 Assembly Language / 351
Running Assembly-Language Programs / 353

Appendix VI Periodicals of Interest / 355

Index / 357

Preface

If you bought your Apple //c in order to do all sorts of strange things to it:
POKE around in it, PEEK inside it, CALL subroutines, RUN programs, and
soon ... If you thrill in making a computer do things that its designers never
imagined . . . If you write and debug programs for fun . . . If you have an Apple
bumper sticker on your car . . . This book is for you!

In this book, we're going to explore all the important software nooks and
crannies in the //c and see how to exploit the power that they hold. You will
be expected to be proficient in the Applesoft BASIC language; an understand-
ing of 65C02 assembly language will also be invaluable.

Some of the major topics that will be covered are as follows:

® The 65C02 microprocessor that controls the //c. This will include a dis-
cussion of 65C02 instructions, addressing modes, I/O handling, and inter-
rupt handling.

® The //c system monitor commands, the structure of the Applesoft lan-
guage, and the internal structure of ProDOS.

® How the //c handles character input and output. This includes a discus-
sion of keyboard input and the various video display modes supported
by the //c (text, graphics, and double-width graphics).

® Memory management techniques.

® How to control the speaker, mouse, and game controller.

® How to use the //c’s two built-in serial ports for communication with
printers and modems.

After you have read this book, you will know absolutely everything there is
to know about how the //c interacts with the outside world and how it pro-
cesses information. (Well, almost everything.) Descriptions of all the “soft
switches” that the //c uses to control its hardware environment will be pre-
sented, as will examples of how to use the //c’s /O memory locations. Fur-
thermore, many of the more important subroutines contained in the //c’s
ROM area will be analyzed and explained.

Here are some of the more interesting programming examples that will be
presented in this book:

® How to speed up the auto-repeat rate of the cursor (using software tech-
niques only).

® How to run two Applesoft programs concurrently (one in main memory
and the other in auxiliary memory).

® How to read mouse input using 65C02 interrupt techniques.

® How to read and write specific blocks on a ProDOS-formatted diskette.

® How to use the keyboard ““type-ahead” feature.

Complete and commented source listings for these programs and several
others are included in the text. They are also available in machine-readable
form on an optional diskette.

xiii

xiv [| Inside the Apple //c

I hope that you enjoy reading this book as much as I enjoyed writing it.
You'll find it a useful reference and an invaluable source of inspiration for
the development of your own software.

My thanks to Rich Williams and Apple Computer, Inc. in Cupertino for
helping me to decode the meaning of some of the more obscure code in the
/Ic’'s ROM. Rich should know—he wrote most of it.

Gary B. Little
Vancouver, British Columbia, Canada

March 1985

About the Author

Gary B. Little is an expert Apple II (and II Plus, //e,
/lc, ...) programmer who resides in Vancouver,
British Columbia. He is a founding member of the
Apples British Columbia Computer Society and of
SAGE (Serious Apple Group, Eh!) and is also an
active memiber of several business organizations that
promote and assist software developers. Gary has
written numerous articles for several computer
publications and is the author of one other micro-
computer book published by Brady Communica-
tions, Inside the Apple /le.

Xv

An Introduction to Apple
and the Apple //c

The Apple //c is the newest member of Apple Computer Inc.’s highly popular
Apple Il family of computers. The other members of this family are the original
Apple 11 (1977), the Apple II Plus (1979), and the Apple //e (1983).

In this book we will be taking an advanced “inside” look at the Apple //c
itself. Keep in mind, however, that much of what will be said will also apply
to its three predecessors because Apple has made a substantial effort to
maintain a high degree of compatibility with other members of the Apple II
family. We will be concentrating on the //c’s built-in language and operating
system (Applesoft and the system monitor) and the ProDOS disk operating
system; other languages and operating systems will be mentioned only briefly.

A Condensed History of Apple Computer, Inc.

Before we begin our detailed examination of the Apple //c, let’s take a brief
look at the history of Apple, the company. This history will reveal how the
original Apple II slowly evolved into the Apple //c in 1984 and will serve to
explain much of the rationale behind the design of the //c.

1976

In the beginning, Apple was made up of just two individuals: Stephen
Wozniak (“Woz"’) and Steven Jobs. Woz provided the hardware and software
expertise and almost single-handedly designed the company’s first two com-
puters, the Apple I and the Apple II (he had the help of Rod Holt who designed
the Apple I's power supply). A patent application was subsequently filed with
respect to the Apple II on April 11, 1977, and U.S. patent #4,136,359 was
eventually issued in early 1979. Jobs was largely responsible for marketing
and raising financing, and it was he who came up with the “Apple” name
(Jobs was apparently thinking of a job that he had recently had in an Oregon
orchard). In the early going, both partners were still working for other com-

1

2 [] Inside the Apple //c

puter companies in California’s Silicon Valley: Jobs with Atari and Woz with
Hewlett-Packard. Fortunately for Apple, Hewlett-Packard was not interested
in Woz’s design for a personal computer and gave him a release so that he
could deal with it as he saw fit.

The Apple I was designed to be sold to and used by hobbyists only; in all,
only about 175 were sold. The Apple II, however, was designed with a much
larger market in mind (although Woz claims he simply wanted to build a
computer with which he could play Atari’s “Breakout” game). That market
quickly materialized as a result of the startling combination (for 1977) of
excellent hardware, attractive packaging, and the availability of informative

technical reference material.

Woz decided to use the MOS Technology 6502 microprocessor to control
the Apple II. This decision was dictated not by the 6502’s reliability, powerful
instruction set, or any other design characteristic, but rather by its price.
Whereas other microprocessors were selling for hundreds of dollars in 1976
and were difficult to find, the 6502 was readily available and it cost only
about twenty dollars. The //c uses the newer 65C02 microprocessor, but it
recognizes all the instructions that the original 6502 uses and supports a few
new ones as well.

With assistance from Allen Baum, Woz wrote all the software for the orig-
inal Apple II that was stored in its read-only memory (ROM). This included
a version of the BASIC programming language called Integer BASIC (which
can’t handle decimal numbers but is great for games), a system monitor for
debugging and for handling fundamental input/output operations, a set of
mathematical subroutines, a mini-assembler for entering programs in assem-
bly language, and “Sweet 16,” a software-simulated 16-bit microprocessor
(Woz was way ahead of his time).

To raise a little money for their fledgling venture, Woz sold his Hewlett-
Packard pocket calculator and Jobs sold his Volkswagen bus. Overhead expenses
were cut to the bare minimum by setting up operation in the garage of Jobs’
parents. As 1977 rolled around, however, it became clear that more money, a
lot more money, was going to be needed.

1977

Since Jobs was the partner responsible for marketing the Apple II, it was
he who began searching for venture capital. That search eventually led him
to Mike Markkula, a former marketing manager at Intel, an integrated-circuit
designing company. Markkula, Jobs, and Wozniak quickly struck a deal whereby
Markkula agreed to put a quarter of a million dollars into Apple in exchange
for an equal partnership interest. He then proceeded to use his expertise to
line up bank financing and additional capital funding. Apple was then finally
ready for the mass market!

1/ An Introduction to Apple and the Apple//c [] 3

The Apple II was formally announced for sale at the first annual West
Coast Computer Faire in early 1977 and it was an instant success. The main
reasons for its early success were that it was easily expandable (more memory
could easily be added to it and eight slots were available for peripheral devices
when they became available), it had a full-size keyboard, and it had color
graphics. And, yes, it looked great!

Not that there weren’t any problems, however. For example, lower case
characters could not be produced by the keyboard and the video display was
only forty columns wide. These shortcomings officially persisted until the
introduction of the Apple //e in 1983, although several other sources of upper-
and lowercase keyboards and 80-column boards did pop up in the interim.

One software problem had to be remedied quickly. Integer BASIC did not
support decimal (floating-point) numbers or functions, and so business and
scientific use of the Apple I was necessarily limited. Apple began to take steps
to remedy this in the summer of 1977 when it negotiated the purchase of
about ten thousand lines of program source code for a floating-point version
of BASIC from Microsoft Corporation. This code was written in 6502 assembly
language and so could be readily adapted to run on the Apple II.

By this time Apple had a few employees, one of which was a young pro-
grammer by the name of Randy Wigginton. Wigginton reworked the Microsoft
source code and came out with a preliminary version of a floating-point BASIC
that would run on the Apple II. This version was called “Applesoft—Extended
Precision Floating Point BASIC Language” and was released in October 1977.
Further work was required to polish Applesoft into a final product, and this
was done during the winter of 1977.

1978

The final version of Applesoft, Applesoft][, was finally released in May 1978;
this same version, with some minor changes, is still in use today on the Apple
/lc. Tt was first available on cassette tape only, but was later provided in ROM
on a card that could be plugged into a slot on the Apple II; it eventually
replaced Integer BASIC on the motherboard when the Apple II Plus was
released in 1979.

The most important new product released in 1978 was probably the Disk
II disk drive and controller card peripherals that are now built in to the Apple
/lc. The disk drive revolutionized the software business because for the first
time it was feasible to develop sophisticated programs that could be easily
loaded and that could quickly and reliably access large data bases. Until the
disk drive was released, all programs had to be saved to and loaded from
cassette tape, which was invariably an exercise in frustration. Many a cottage
software business started up after the disk drive became available, and in a
short time hundreds of commercial software products were being developed
for the Apple II.

4 [Inside the Apple//c

The Disk II was controlled by a program called the Disk Operating System
(DOS), first written by Bob Shepardson and later substantially modified by
Randy Wigginton, J. R. Huston, and Rick Auricchio. DOS has undergone
several revisions throughout the years and the current version is DOS 3.3.
This version still works with the Apple //c, although it has been superseded
by a new DOS called ProDOS.

1979

Sales really ballooned for Apple in 1979. Apple was able to increase sales
by a total of forty million dollars (1) over the previous year, to a total of forty-
eight million dollars. By this time, the Apple II was selling not only because
it was an excellent hardware package but also because an ever-increasing
supply of software was available that could be run on it. One important piece
of software, VisiCalc, the very first financial spreadsheet program, is reputed
to have been directly responsible for stimulating the purchase of tens of
thousands of Apple II computers.

The Apple II underwent minor surgery in 1979 and came out of it with a
new name: Apple II Plus. The Apple II Plus is essentially the same as an Apple
IT, except that its ROM chips contain Applesoft][rather than Integer BASIC
and its system monitor supports more powerful screen-editing commands
and the ability to automatically run a program from diskette whenever the
power is turned on. At the same time, a couple of handy debugging commands
(step and trace) were taken out of the system monitor, but they were not
missed by many users. The modifications to the system monitor were written
by John Arkley.

Apple announced its Pascal Operating System in 1979 as well. Because
Pascal requires a huge amount of memory in which to operate, Apple also
released a new peripheral card, called a language card, at the same time. The
language card effectively added another 16K of memory to the Apple II, which
could “replace” the Applesoft ROMs when Pascal was being used. The lan-
guage card was plugged into slot #0 of the Apple Il but in the //c it is simulated
in the memory chips on the motherboard. These different implementations,
however, are transparent to the user.

1980-1982

Apple’s sales continued to explode in the early eighties: $117 million in
1980, $334.8 million in 1981, and $583.1 million in 1982! Most of these sales
were generated by the Apple II Plus, which eventually set a record for monthly
sales in December 1982.

The infamous Apple // was released in 1980. For several reasons, notably
its early unreliability and high price, it never established a significant market
presence even though a modified version (known as the Apple /// Plus) was

1/ An Introduction to Apple and the Apple //c 1 s

still being produced as late as 1984. It comes with an Apple II emulation
mode that allows it to run most, but not all, of the software that runs on the
Apple II. .

In the winter of 1980-81, Apple made a public offering of stock, which was
quickly snapped up. The proceeds were largely directed into intensive (and
expensive) research and development projects. We'll see in a moment what
those projects led to.

If imitation is the sincerest form of flattery, then Apple must surely be
blushing. Since about 1980, tens of thousands of unofficial Apple II “clones”
(euphemistically called “compatibles’’) have been manufactured, mostly by
Taiwanese concerns. To achieve absolute compatibility with the Apple II,
most of these clones contain ROMs that are direct copies of the Applesoft and
system monitor ROMs. Not surprisingly, Apple considers this to be highly
improper and has successfully instituted legal proceedings in the United
States and many other countries against several manufacturers in order to
protect its copyrights and patent rights. The importation of Apple II clones
to the United States has also been reduced because Apple has registered its
copyrights with U.S. Customs. The Customs authorities have the power to
confiscate shipments of products that violate Apple’s copyrights.

1983

At Apple’s Annual General Meeting on January 19, 1983, two major
announcements were made. First, the Lisa computer was announced, a com-
puter that was immediately recognized as a technological and innovative
triumph because of its ease of use and excellent operating system. Its retail
price, however, was initially too high for it to sell in the quantities that Apple
would have liked. Subsequent price reductions, coupled with increasing avail-
ability of software, has helped to remedy this problem.

The second major announcement was the introduction of the successor to
the Apple II Plus, the Apple //e. The Apple //e was carefully designed to
maintain as high a degree of compatibility with the Apple II Plus as possible
so that the thousands of software packages developed for the Apple II Plus
would not have to be rewritten. Several new features were added to the //e,
however, that make it a significantly different computer: built-in support for
an 80-column display, an upper- and lowercase keyboard, self-testing subrou-
tines, and enhanced editing capabilities.

In addition, Apple significantly simplified the construction of the //e by
reducing the number of integrated circuits on the motherboard from 109 on
the Apple II Plus to only 31! It did this by designing two special integrated
circuits to replace many of the discrete components used on the II Plus.

The manager of the team that designed the Apple //e was Peter Quinn. The
hardware was designed by Walt Broedner and most of the modifications to
the old system monitor were made by Rick Auricchio and Bryan Stearns.

6 [| Insidethe Apple//c

There was also a major change at the managerial level at Apple in 1983. On
April 8, Apple announced that Mike Markkula had resigned as President and
that John Sculley had been named to succeed him. Sculley was formerly
president of Pepsi-Cola and it is reported that his salary is in excess of one
million dollars per year.

1984

At its January 24, 1984, Annual General Meeting Apple announced the
Macintosh computer (“Mac”’), a scaled-down version of Lisa. Mac undoubt-
edly represents another mass-market best seller for Apple because it is easy
to use and it is priced affordably. Within a month of its release, at least two
Mac-specific magazines and several books had been published. This is remi-
niscent of what happened in 1979 when sales of the Apple II began to sky-
rocket.

For users of Apple II computers, there was one major announcement at the
Annual General Meeting: the release of a successor to DOS 3.3 called ProDOS.
This disk operating system is significantly different from, but upwardly com-
patible with, DOS 3.3. Most Applesoft programs, when transferred to ProDOS-
formatted diskettes, will run without modification. The main advantages of
ProDOS are that it is faster, it is easier for programmers to use, it supports a
directory structure that is more convenient for use with larger-capacity dis-
kettes or hard disks, and its disk format can be read by the Apple ///.

On April 24, 1984, Apple formally introduced the portable Apple //c. In
keeping with Apple tradition, the //c is compatible with most software designed
for its predecessor, the Apple //e. However, the //c actually represents a radical
departure from the Apple II norm because of the way the hardware has been
packaged. For example, the peripheral expansion slots on the /e are gone and
have been replaced by built-in interfaces and a built-in disk drive. This was
done primarily to reduce the size of the unit to that of a true portable, and
also to make the //c appeal more to the large “plug 'n run” class of users.
Furthermore, the //c simply looks different than any of the earlier Apple II
computers.

The //c is a wonder of computer miniaturization. Not counting the sixteen
RAM chips that provide the //c with 128K of memory, there are only twenty-
one integrated circuits (ICs) used in the system. Several of these ICs are custom
large-scale-integration (LSI) chips that perform tasks that are normally han-
dled by several discrete ICs when conventional technology is used.

The manager of the /c design team was the same Peter Quinn who was in
charge of the //e project. The //c’s firmware was written by Ernie Beernink,
Rich Williams, and James Huston; if you ever forget their names, press

1/ An Introduction to Apple and the Apple /ic [| 7

[control-RESET] right after you turn on the //c (before the disk has a chance
to boot up), and then type in and run the following short Applesoft program:

100 IN# 5: INPUT A$: PRINT AS$

Surprise, surprise!

Hardware and the Apple //c

Although this book is primaril/}; concerned with software, let’s begin by
taking a quick look at the hardware that makes up the Apple //c.

The keyboard is laid out in the standard QWERTY arrangement and con-
tains all of the keys you would find on a standard typewriter plus a few extra
special ones to boot. Just above the keyboard are the reset button, the 80/40
switch, and the keyboard switch. The keyboard and these special switches
will be described in detail in Chapter 6.

On the left side of the //c you will find the volume control wheel for the
speaker and the speaker headphone jack. You can’t see the speaker because
it’s under the hood. In Chapter 9 we will see how it can be used to generate
music.

On the other side of the //c is the built-in disk drive. This drive can read
diskettes formatted on all previous Apple II models.

We won'’t encourage you to take the //c apart to see the electronic circuitry
lurking beneath the surface since this is frowned on by the warranty people
at Apple. If you did, however, you would see the various integrated circuits
that make up the //c, including the 65C02 microprocessor that controls every-
thing, the two 6551 serial communications adapters, and the RAM and ROM
memory chips.

The //c can be interfaced to the “real world” through one of seven connectors
that are located on its back panel (see Figure 1-1):

® The mouse/game connector: This is where the Apple Mouse or a joystick
can be connected. We will be examining it in Chapter 10.

® The modem port (serial port 2): A modem is a device that allows you to
communicate with other computers over standard telephone lines. See
Chapter 11.

® The video expansion connector: This connector allows the //c to be con-
nected to any of several display options, including RGB (red-green-blue)
displays, flat-panel liquid-crystal displays, and ordinary black and white
or color television sets.

® The video monitor connector.

® The external disk drive connector: For those who can'’t survive with just
one drive.

8 [1 Inside the Apple //c

Figure 1-1. Back panel of the Apple //c.

® The printer port (serial port 1): A printer will undoubtedly be the first
peripheral that you add to your //c. See Chapter 11.

® The power connector: You can’t do much without it!

Previous members of the Apple II family have several expansion slots that
can be used to hold interface cards that control external devices. The //c has
no such slots, but its built-in interfaces and supporting software have been
carefully designed so that they can be controlled by the same commands that
would be used on a slot-based Apple II. The only difference is a semantical
one: you refer to “port” numbers on the //c and to “slot” numbers on the
Apple //e, Apple II Plus, and Apple II. The numbers assigned to each port on
the //c are shown in Table 1-1.

So much for the //c’s hardware!

Learning the Fundamentals

Most of the readers of this book are expected to be intermediate to advanced
programmers who need no explanation of fundamental concepts such as
numbering systems, bits and bytes, pointers, vectors, assembly language, and
how to load and run programs.

1/ An Introduction to Apple and the Apple//c [__] 9

Table 1-1. Port assignments on the Apple //c.

Port
Number Description
0 Standard keyboard and video I/O (see Chapters 6 and 7)
1 Serial interface for printer (see Chapter 11)
2 Serial interface for modem (see Chapter 11)
3 80-column video display (see Chapter 7)
4 Mouse interface (see Chapter 10)
6 Internal disk drive interface (see Chapter 5)
7

External disk drive interface (see Chapter 5)

If you feel a little uncomfortable with any of these concepts, then you should
first read Appendix V (“For Beginners Only”) before attempting to tackle the
rest of this book. You will probably also feel more comfortable if you read an
introductory book on computer systems first.

What Won't Be Covered

There are a few topics that will not be discussed at length in this book.
Integer BASIC, the BASIC that was built into the first several thousand Apple
II's, will not be discussed because it is rarely used anymore and is fast becom-
ing obsolete. In fact, the ProDOS disk operating system does not allow Integer
BASIC programs to be run at all.

The only high-level language that will be discussed at length will be Apple-
soft. For more information on Apple Pascal, Fortran, or Logo, you will have
to consult other texts.

Using the Optional Diskette

This book can be purchased either with or without a ProDOS- formatted
program diskette, or the diskette can be purchased separately. The diskette
contains all the programs that are presented as examples in the following
chapters and will allow you to quickly load a program into memory, or modify
a program, without having to endure the pleasure of typing it in from scratch.

The files on the diskette are either Applesoft programs (marked by “BAS”
when you CATALOG the diskette), text files (marked by “TXT"), or binary
programs (marked by “BIN”).

The text files on the diskette are the source-code listings for the binary
programs and are in the format expected by the Merlin Pro assembler (which
is available from Roger Wagner Publishing, Inc., 10761 Woodside Avenue,

10[__| Inside the Apple //c

Suite E, Santee, California). Most other assemblers are also able to read these
text files. Keep in mind, however, that the source-code formats used by dif-
ferent assemblers do vary and it may be necessary to modify a source code
file to take into account any such differences before the file can be properly
assembled.

The Applesoft programs and binary programs can usually be run by using
the standard RUN and BRUN commands, respectively, or the ProDOS “intel-
ligent RUN command”, “~" (a dash), which automatically checks the file type
and will RUN an Applesoft program or BRUN a binary program. Some of the
binary programs, however, are designed to be called from an Applesoft pro-
gram only and should simply be loaded into memory using the BLOAD
command. Such exceptions will be noted in the discussions that relate to
these programs in this book.

Further Reading for Chapter 1

Historical background . ..

“Photograph of Apple1”, Apple Orchard, April 1983, front cover. The original
Apple product.

A.L.Taylor III, “Striking it Rich”, Time, February 15, 1982, pp.42-47. Apple
makes the front cover of Time.

D. Garr, Woz: The Prodigal Son of Silicon Valley, Avon Books, 1984. An in-
depth review of the history of Apple.

P. Freiberger and M. Swaine, Fire in the Valley: The Making of the Personal
Computer, Osborne/McGraw-Hill, 1984.

M. Moritz, The Little Kingdom: The Private Story of Apple Computer,
Morrow, 1984.

P. Lopiccola, “Core of a New Apple”, Popular Computing, March 1983, pp.
114-117.How the Apple I Plus was transformed into the //c’s predecessor,
the Apple //e.

J. Markoff, “The Apple IIc Personal Computer”’, Byte, May 1984, pp. 276—
284. Refer to this article for pictures of the inside of the //c and a good
overview of the //c’s hardware.

Standard reference work . . .

The Apple I/c Reference Manual, Volumes 1 and 2, Apple Computer, Inc., 1984.
Includes detailed information on the hardware and software that makes
up the Apple //c. Source code for the //c system monitor is included.

The 65C02
Microprocessor

The “brains” of every microcomputer are represented by a complex inte-
grated circuit called a microprocessor that controls the operation of the
system as a whole. The microprocessor used in the //c is called a 65C02.

The 65C02 is closely related to the 6502 microprocessor that is used in the
Apple //e, Apple II Plus, and Apple II. In fact, all programming instructions
supported by the 6502 are also supported by the 65C02. This is fortunate since
it means that no translation of specific 6502 instructions need be performed
before the program can be executed by the 65C02 microprocessor. (This does
not mean, of course, that any program written for the 6502-based Apple
systems will run on the //c. If the program accesses subroutines or I/O locations
that are not present on the //c, then it will obviously not run properly and
will have to be rewritten.)

It’s not a two-way street, however. Assembly-language programs written
specifically for the 65C02 may have to be partially translated before they will
run on a computer using the 6502. This is because the 65C02 used on the //c
supports ten new instructions and some new memory addressing techniques
that the 6502 does not. If the 6502 is asked to interpret these new instructions,
it will fail miserably.

In this chapter we will be taking special note of these new instructions. If
you are writing software that must run on either a 65C02- or a 6502-based
Apple, then you must not use them.

By the way, the “C” in 65C02 stands for CMOS, an acronym for Comple-
mentary Metal Oxide Semiconductor. This is the name for the process used
to manufacture the transistors that form the 65C02 integrated circuit. ACMOS
integrated circuit consumes far less power than a functionally identical circuit
built using conventional technology. It will run cooler and can be operated
by a smaller power supply. These are important factors when you want to
design a small, portable, computer like the //c.

The 65C02 is an example of what is usually called an “8-bit” microprocessor.
These types of microprocessors can handle data only one byte (8 bits) at a

1

12 [] Inside the Apple //c

time and they typically use 16 lines to address memory. Since each of these
lines can be on or off, the 65C02 is capable of addressing 65,536 (2” 16) memory
locations at any given time. (Since one ‘K" of memory is equal to 1,024 bytes,
this represents a “64K’ memory space.) Contrast this with the newer wave
of 16-bit microprocessors that can manipulate two bytes of data at once and
have typical address spaces of one megabyte or more.

While the 65C02 is operating, it is continuously interpreting a stream of
bytes in order to determine what it should do next. The bytes in this stream
are controlled by the computer program that is being executed. This program
contains instructions that enable the 65C02 to perform data transfers, input/
output operations, logical operations, simple arithmetic, and other funda-
mental control operations.

In this chapter, we will take a brief look at the 65C02 instruction set and
internal registers and describe how the 65C02 has been implemented on the
/lc. Note, however, that the purpose of this chapter is not to teach you 65C02
assembly-language programming, but rather to review some of the more
important principles relating to the 65C02 microprocessor. Consult the ref-
erences at the end of the chapter for a list of books that are available to teach
you the art of programming the 65C02.

Important 65C02 Concepts’

The 65C02 forms only one part of a microcomputer system such as the //c.
The other important parts are the system memory (RAM and ROM) and the
system input/output (I/O) devices. It is the 65C02, however, that is in charge
of controlling both the accessing of memory and the passing of data to and
from the I/O devices.

The 65C02 is told how and when to perform its chores by a series of instruc-
tions that it is constantly interpreting. These instructions will be discussed
in the next section. In brief, they cause the 65C02 to perform a variety of data-
manipulation tasks using a set of six internal registers that will be discussed
below in the section entitled “65C02 Registers.”

Zero Page and the Stack

This is a convenient time to introduce you to two rather important areas
of memory that are used in special ways by the 65C02 microprocessor: zero
page and the stack.

Each 256 bytes of memory that starts at an address that is an integer
multiple of $100 (256), that is, $0000, $0100, $0200, $300, . . ., $FF00 is called
a “page” of memory. For example, the area of memory from $BF00 through
$BFFF is referred to as page $BF. Zero page, the page of memory from
$0000 . . . $OOFF, is treated in a special way by the 65C02. Generally speaking,

2/ The 65C02 Microprocessor [| 13

whenever the address on which a 65C02 instruction acts is contained in zero
page, the highest two hexadecimal digits of the address do not have to be
specified (since they are always zero by definition). This not only reduces the
size of the program, it also allows the program to be executed more quickly.
No wonder, then, that zero page is prime real estate as far as the 65C02 is
concerned.

Page one of memory ($100 . .. $1FF) holds the 65C02 stack. The stack is
used as a temporary data area by the 65C02 and several instructions can be
used to implicitly read data from it or store data to it. These instructions are
executed very quickly because they automatically calculate where to store
the data or where to read it from by examining a special internal 65C02 “‘stack
pointer” register. This register always points to the next free position avail-
able in the stack. When a byte is stored on the stack, it is stored at the position
within page one given by the stack pointer and then the stack pointer is
decremented by one. When a byte is removed from the stack, the stack pointer
is incremented by one and then the byte is taken from the position within
page one pointed to by the stack pointer.

We will be discussing the stack pointer, and other registers, in greater detail
below.

65C02 Instruction Set

There are 66 general types of instructions that the 65C02 is capable of
executing; they are listed in Table 2-1. These instructions include all 56
instructions supported by the standard 6502 microprocessor as well as 10
new ones used by the 65C02 only. The new instructions are marked with an
asterisk in Table 2-1.

(The //c uses the version of the 65C02 produced by NCR Corporation. Another
version, produced by Rockwell International Corporation, supports all of the
NCR instructions and four additional ones called SMB (set memory bit), RMB
(reset memory bit), BBS (branch on bit set), and BBR (branch on bit reset).
You cannot use these instructions on the //c.)

Each instruction is actually a binary number that is interpreted by the
65C02 but it is usually represented by a three-character mnemonic name that
is easier to remember. These mnemonics are used whenever an assembly-
language program is being developed. The assembler that is used takes care
of translating them into the corresponding binary numbers (the “machine
language”’) that the 65C02 can execute directly.

The 65C02 instructions can be used to perform a wide variety of functions.
For example, they can be used to pass data between two registers or between
registers and memory, to perform simple arithmetic, to increment and dec-
rement index registers and memory locations, to pass data between registers
and the stack, to perform logical functions, and so on. Figure 2-1 illustrates,

14 [] Inside the Apple //c

in a general way, how each of the 65C02’s instructions affect memory and the
65C02 registers.

As you might expect, it takes a finite period of time for any particular
instruction to be executed by the 65C02. The time required to execute one
instruction, however, is not necessarily the same as the time required to

Table 2-1. 65C02 instruction set mnemonics in alphabetical order.

ADC Add to accumulator LDX Load X register

AND “And” with accumulator LDY Load Y register

ASL Arithmetic bit-shift left LSR Logical bit-shift right
BCC Branch on carry clear NOP No operation

BCS Branch on carry set

BEQ Branch on result zero ORA “Or” with accumulator

BIT Test bits PHA Push accumulator on stack
BMI Branch on result minus PHP Push status on stack
BNE Branch on result not zero *PHX Push X register on stack
BPL Branch on result plus *PHY Push Y register on stack
*BRA Branch relative always PLA Pull accumulator from stack
BRK Software interrupt PLP Pull status from stack
BVC Branch on overflow clear *PLX Pull X register from stack
BVS Branch on overflow set *PLY Pull Y register from stack
CLC Clear carry flag ROL Rotate left through carry
CLD Clear decimal mode flag ROR Rotate right through carry
CLI Clear interrupt disable flag RTI Return from interrupt
CLV Clear overflow flag RTS Return from subroutine
CMP Compare with accumulator
CPX Compare with X register SBC Subtract from accumulator
CPY Compare with Y register SEC Set carry flag
*DEA Decrement accumulator SED Set decimal mode flag

DEC Decrement memory by one SEI Set interrupt disable flag
DEX Decrement X register by one SI1A Store accumulator

: ~ STX Store X register
DEY Decrement Y register by one STY Store Y register

EOR “Exclusive-or” with *STZ Store zero in memory

accumulator
TAX Transfer accumulator to X

*INA Increment accumulator TAY Transfer accumulatortoY
INC Increment memory by one *TRB Test and Reset with A
INX Increment X register by one *TSB Test and Set with A
INY Increment Y register byone TSX Transfer stack pointer to X

TXA Transfer X to accumulator

TXS Transfer X to stack pointer

TYA Transfer Y to accumulator

JMP Jump to new location
JSR Jump + save return address

LDA Load accumulator

*These instructions are not available on the 6502.

2/ The 65C02 Microprocessor || 15

65C02 SYSTEM MEMORY
INC DEC STZ
ASL LSR ROL ROR
B sk ok U o4 lcweAcsscTssTRB L J !
; STA I AND.ORA,EORBIT Loy STY CPY
{ | Y ¥ | y
ACCUMULATOR
L TXA— «—TYA—
X-REGISTER ASL LSR ROL ROR Y-REGISTER
LDX LDA CMP ADC SBC
AND ORA EOR BIT | e
INX DEX CPX e INY DEY
\TAX_T DEA INA TAY/‘: & Cey
| 1 PLX | 1 PLY
XS TSX PHX PTA PLA PHY
STACK < JSR PROGRAM
POINTER 65C02 STACK |_rrs»| COUNTER
PHA PLA PHP PLP 100 . . F
JSR RTS BRK RTI (- $1FF) <BRK—
PHX PLX PHY PLY RTl—]
PII_P P:lP RlTI BLK
i | NOP
BEQ BNE
STATUS BPL BMI
BCC BCS
CLC SEC CLD SED CLV Ve BVS BRA
CLI SEI IMP

NOTE: Solid arrows indicate a transfer of data.
Dashed arrows indicate a transfer of information.

Figure 2-1. Usage chart of 65C02 instructions.

execute another. In fact, the time it takes to execute one general type of
instruction will even vary depending on how the instruction is told to access
the data on which it is to operate (that is, its “‘addressing mode”).

Table 2-2 sets out the times required to execute each instruction in units of
65C02 “machine cycles” for each valid addressing mode (addressing modes
will be discussed in detail later in this chapter). The length of a 65C02 machine
cycle is fixed by the frequency of the clock signal fed into the 65C02 micro-
processor. On the //c, this clock signal is 1.023 megahertz, which means that
every machine cycle takes 0.9775 (1/1.023) microsecond to perform.

It is often convenient to know exactly how long it will take to execute a
particular instruction when precise timing loops must be generated in soft-
ware. We will see an example of this in Chapter 9, where a program is
presented that can generate musical notes of specific frequencies.

16 [] Inside the Apple //c

Table 2-2. 65C02 instruction set and cycle times.

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

ADC #num 69 2 2

zZpage 65 2 3

zpage, X 75 2 4

*(zpage) 72 2 5

(zpage,X) 61 2 6

(zpage),Y 71 2 5 (1)

abs 6D 3 4

abs,X 7D 3 4 1)

abs,Y 79 3 4 (1)
AND #num 29 2 2

zpage 25 2 3

zpage,X 35 2 4

*(zpage) 32 2 5

(zpage,X) 21 2 6

(zpage),Y 31 2 5 (1

abs 2D 3 4

abs,X 3D 3 4 (1)

abs,Y 39 3 4 1)
ASL [accumulator] 0A 1 2

zpage 06 2 5

zpage,X 16 2 6

abs OE 3 6

abs, X 1E 3 6 (3)
BCC disp 90 2 2)
BCS disp B0 2 2 (2)
BEQ disp : FO 2 2 2)
BIT *#num 89 2 2

zpage 24 2 3

*zpage, X 34 2 4

abs 2C 3 4

*abs,X 3C 3 4
BMI disp 30 2 2 2)
BNE disp DO 2 2)
BPL disp 10 2 2 2)
BRA *disp 80 2 2)
BRK [implied] 00 1 7
BVC disp 50 2 2)
BVS disp 70 2 2 2)

(continued)

Introducing the premier of —
Programming Access Tools to Accompany ln5|de the Apple lic
by Gary B. Little

Now you can discover the magic locked inside your Apple lic — faster and easier than
ever before! Programming Access Tools offers you virtually instant access to 20 major
programs (including 12 assembler source code files). With very little preparation orstart-up
time, you'll be working with such programs as:

* Keyboard Input Routines * How to Reconfigure the Serial Ports
% Speed Up Cursor Auto Repeat Rate * How to Control the Mouse
* How to Use Auxillary Memory * Generating Music

Here’s How to Order

Enclose a check ormoney order for $25.00, plus sales tax, slip in this handy order envelope
and mail!No postage needed. Or charge it to your VISA or MasterCard. Simply complete

D YES! I want to unlock the magic inside my Apple lic. Please rush me
Programming Access Tools For Inside The Apple lic (D5653-3). | have enclosed
payment of $25.00 plus sales tax.

Name Charge my Credit Card Instead
O VISA O MasterCard

Address

City State Zip. Account Number

Expiration Date

Signature as it appears on Card

Dept. Y
Bra Brady Communications Co., Inc., New York, NY 10020
A Simon & Schuster Publishing Company

AJlEEETaEEEEESE L)

1
N .
' '
s '
' '
L}
' '
' '
'

It Came From Inside .

‘0
i The Apple llc!

T I LI L LI LTI TITILY

See over for complete listings

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO. 17 WEST NYACK, NY

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

PRENTICE-HALL, INC.
P.O. Box 462
West Nyack, NY 10994

2/ The 65C02 Microprocessor [| 17

Table 2-2. 65C02 instruction set and cycle times (continued).

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

CLC [implied] 18 1 2
CLD [implied] D8 1 2
CLI [implied] 58 1 2
CLV [implied] B8 1 2
CMP #num C9 2 2
zpage C5 2 3
zpage, X D5 2 4
*(zpage) D2 2 5
(zpage,X) Ci 2 6

(zpage),Y D1 2 5 1)
abs CD 3 4

abs X DD 3 4 (1)

abs,Y D9 3 4 (1)
CPX #num EOQ 2 2
zpage E4 2 3
abs EC 3 4
CPY #num Cco 2 2
zpage C4 2 3
abs CC 3 4
DEA *[accumulator] 3A 1 2
DEC zpage Cé 2 5
zpage,X D6 2 6
abs CE 3 6

abs, X DE 3 6 3)
DEX [implied] CA 1 2
DEY [implied] 88 1 2
EOR #num 49 2 2
zpage 45 2 3
zpage,X 55 2 4
*(zpage) 52 2 5
(zpage,X) 41 2 6

(zpage),Y 51 2 5 (1)
abs 4D 3 4

abs,X 5D 3 4 (1)

abs,Y 59 3 4 (1)
INA *[accumulator] 1A 1 2

(continued)

18 [Inside the Apple //c

Table 2-2. 65C02 instruction set and cycle times (continued).

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

INC zpage E6 2 5
zpage,X F6 2 6
abs EE 3 6
abs,X FE 3 6 3)
INX [implied] E8 1 2
INY [implied] C8 1 2
JMP abs 4C 3 3
(abs) 6C 3 6 4
*(abs,X) 7C 3 6
JSR abs 20 3 6
LDA #num A9 2 2
zpage A5 2 3
zpage, X B5 2 4
*(zpage) B2 2 5
(zpage, X) A1l 2 6
(zpage),Y B1 2 5 1)
abs AD 3 4
abs,X BD 3 4 (1)
abs,Y B9 3 4 (1)
LDX #num A2 2 2
zpage A6 2 3
zpage,Y B6 2 4
abs AE 3 4
abs,Y BE 3 4 (1)
LDY #num A0 2 2
zpage A4 2 3
zpage, X B4 2 4
abs AC 3 4
abs,X BC 3 4 (1)
LSR [accumulator] 4A 1 2
zpage 46 2 5
zpage, X 56 2 6
abs 4E 3 6
abs, X 5E 3 6 (3)
NOP [implied] EA 1 2
ORA #num 09 2 2
zpage 05 2 3
zpage, X 15 2 4
*(zpage) 12 2 5

(continued)

2/ The 65C02 Microprocessor | 19

Table 2-2. 65C02 instruction set and cycle times (continued).

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

(zpage,X) 01 2 6

(zpage),Y 11 2 5 (1)
abs 0D 3 4

abs,X 1D 3 4 (1)

abs,Y 19 3 4 1)
PHA [implied] 48 1 3
PHP [implied] 08 1 3
PHX *[implied] DA 1 3
PHY *[implied] S5A 1 3
PLA [implied] 68 1 4
PLP [implied] 28 1 4
PLX *[implied] FA 1 4
PLY *[implied] 7A 1 4
ROL [accumulator] 2A 1 2
zpage 26 2 5
zpage,X 36 2 6
abs 2E 3 6

abs,X 3E 3 6 3)
ROR [accumulator] 6A 1 -2
zpage 66 2 5
zpage, X 76 2 6
abs 6E 3 6

abs X 7E 3 6 (3)
RTI [implied] 40 1 6
RTS [implied] 60 1 6
SBC #num E9 2 2
zpage E5 2 3
zpage,X F5 2 4
*(zpage) F2 2 5
(zpage,X) El 2 6

(zpage),Y F1 2 5 (1)
abs ED 3 4

abs, X FD 3 4 (1)

abs,Y F9 3 4 (1
SEC [implied] 38 1 2
SED [implied] : F8 1 2

(continued)

20 [] Inside the Apple //c

Table 2-2. 65C02 instruction set and cycle times (continued).

Instruction Assembler Opcode Number Number of
Mnemonic Operand Format Byte of Bytes Clock Cycles Notes

SEI [implied] 78 1 2
STA zpage 85 2 3
zpage, X 95 2 4
*(zpage) 92 2 5
(zpage,X) 81 2 6

(zpage),Y 91 2 5 1)
abs 8D 3 4

abs,X 9D 3 4 1)

abs,Y 99 3 4 0y
STX zpage 86 2 3
zpage,Y 96 2 4
abs 8E 3 4
STY zpage 84 2 3
zpage, X 94 2 4
abs 8C 3 4
STZ *zpage 64 2 3
*zpage, X 74 2 4
*abs 9C 3 4
*abs,X 9E 3 5
TAX [implied] AA 1 2
TAY [implied] A8 1 2
TRB *zpage 14 2 5
*abs 1C 3 6
TSB *zpage 04 2 5
*abs oC 3 6
TSX [implied] BA 1 2
TXA [implied] 8A 1 2
TXS [implied] 9A 1 2
TYA [implied] 98 1 2

Instructions marked with an asterisk are not available on the 6502.
Notes:

(1) Add one clock cycle if a page boundary is crossed.

(2) Add one clock cycle if a branch occurs to a location in the same page; add two
clock cycles if a branch occurs to a location in a different page.

(3) Add one clock cycle if a page boundary is crossed; always 7 cycles on the 6502.

(4) 5 cycles on the 6502.

See Table 2-3 for a description of the assembler operand formats.

2/ The 65C02 Microprocessor [| 21

65C02 Registers

While the 65C02 is executing a program, it makes use of the six internal
registers that are shown in Figure 2-2. These registers are used to manipulate
data in the manner dictated by the program that is executing and also to
make the 65C02 aware of various aspects of the status of the system: where
the next instruction to be executed is located, where the next free space in
the stack is located, and what the status of its seven internal flags is. A detailed
understanding of these registers is important before a 65C02 assembly-lan-
guage program can be written. We will now take a closer look at each of the
six registers.

7 "]
A ACCUMULATOR
7 /]
Y INDEX REGISTER Y
7 [']
X INDEX REGISTER X
15 7 [']
PCH PCL PROGRAM COUNTER
7 ']
| s STACK POINTER
7
Y PROCESSOR STATUS
(n[v] [e[o]r]z][c]|ReqisTER, ¢
CARRY
L ZERO

INTERRUPT DISABLE
DECIMAL MODE
BREAK COMMAND
UNUSED

OVERFLOW
NEGATIVE

Figure 2-2. The 65C02 registers.

The Accumulator—A

The 65C02 supports two simple arithmetic instructions: ADC (add with
carry) and SBC (subtract with carry). Both of them require that the first of

22 [] Inside the Apple //c

the two operands in the addition or subtraction be contained in the accu-
mulator register, A. After the arithmetic has been performed, the result is
stored in A. This is how it gets its name—it “accumulates” the results of
arithmetic operations that are performed. The accumulator is an 8-bit register
and so can hold numbers from 0 to 255 only.

The accumulator is unique in that it is the only one of the 65C02’s registers
that can be used to perform the logical instructions, namely, EOR (logical
“exclusive-or”’), ORA (logical “or”’), and AND (logical “and”), or any of the
bit-shifting instructions, namely, ASL (arithmetic shift left), LSR (logical shift
right), ROL (rotate left), and ROR (rotate right). (You should note, however,
that the bit-shifting instructions can also operate directly on memory loca-
tions.)

Here are the 65C02 instructions that directly use and affect the accumula-
tor:

® Arithmetic : ADC, SBC

® Increment : INA (not on 6502)

® Decrement : DEA (not on 6502)

® Logical : AND, ORA, EOR, BIT, TRB (not on 6502), TSB (not on 6502)
e Bit-shifting : ASL, LSR, ROL, ROR

® Compare : CMP

® Store in memory : STA

® Load from memory or with data : LDA

® Store on stack : PHA

® Load from stack : PLA

® Inter-register transfer : TAX, TAY, TXA, TYA

The Index Registers—Xand Y

Like the accumulator, the X and Y index registers are eight bits in size and
can contain numbers from 0 to 255.

As their name suggests, the index registers are used primarily to locate
elements contained in data structures in memory, such as a series of elements
in a one-dimensional array. This is done by fixing the beginning address of
the data structure and then simply adjusting the index register so that the
sum of the beginning address and the index register is equal to the address
of the element that is to be accessed.

The 65C02 supports several special instructions that directly use and affect
the index registers:

® Increment : INX, INY
® Decrement : DEX, DEY

2/ The 65C02 Microprocessor [| 23

® Inter-register transfer : TAX, TAY, TXA, TYA, TXS, TSX
® Store in memory : STX, STY

® Store on stack : PHX (not on 6502), PHY (not on 6502)

® Load from stack : PLX (not on 6502), PLY (not on 6502)
® Load from memory or with data : LDX, LDY

® Compare : CPX, CPY

Note that the logical instructions and bit-shifting instructions that can be
used with the accumulator cannot be used with the index registers.

The Processor Status Register—P

The 8-bit processor status register holds the states of seven one-bit flags or
“status” bits that are referenced by the 65C02 when it is executing many of
its instructions. (One bit in the processor status register, bit 5, is not used by
the 65C02.) Each of these flags has a specific meaning and can markedly affect
how instructions are executed. For example, the 65C02 supports a series of
“branch on condition” instructions (BCC, BCS, BPL, BMI, BEQ, BNE, BVC,
BVS), each of which can be used to examine the status of a particular flag
and to cause the program to “jump”’ to a new location if the condition is met
or to continue on with the next instruction in memory if it is not. (There is
also a “branch always” instruction, BRA, that will cause an unconditional
jump.)

Although almost all instructions will cause flags in the processor status
register to be adjusted after they have been executed, the following instruc-
tions explicitly affect them:

® Clear and set the carry flag : CLC, SEC

® Clear and set the decimal flag : CLD, SED
® Clear and set the interrupt flag : CLI, SEI
® Clear the overflow flag : CLV

Let’s take a look at each of these seven flags right now.

Carry Flag (C)

The 65C02 uses the carry flag in three quite different ways.

First, the carry flag represents the “ninth” bit in any unsigned addition
(ADC) or subtraction (SBC) operation that is performed. (“Unsigned” means
that all eight bits of a byte are used to represent the magnitude of a number.)
It can be examined after the addition or subtraction in order to determine
whether the result is outside the range of numbers that can be stored in the

8-bit accumulator. This allows for easy manipulation of numbers that use
more than one byte.

24 [] Inside the Apple //c

The 65C02 can perform arithmetic in one of two modes: binary and decimal.
The mode used depends on the setting of the status register’s decimal mode
flag (see below).

In binary mode, each byte is considered to represent a simple unsigned
binary number from 0 . ..255. When arithmetic operations are performed,
the standard rules for adding or subtracting two binary numbers are followed.

In decimal mode, however, each half of the byte is considered to represent
a single decimal digit from 0 to 9; this means that only those decimal numbers
from 00 . . . 99 can be represented. When arithmetic operations are performed
on such numbers, the result is always stored in the same decimal format.

In either mode, before any arithmetic is performed, the carry flag must be
cleared with a CLC instruction, in the case of addition, or set with a SEC
instruction, in the case of subtraction. (If multibyte arithmetic is being per-
formed, then the carry is adjusted only at the beginning of the sequence of
additions or subtractions.) If the state of the carry flag changes after an
addition operation, then the true answer is 256 (if in binary mode) or 100 (if
in decimal mode) more than the number in the accumulator. If the carry flag
changes after a subtraction, then the true answer is 256 (if in binary mode)
or 100 (if in decimal mode) less than the number in the accumulator.

The second use of the carry flag is as a ninth bit that participates whenever
the ASL, LSR, ROL, and ROR bit-shifting instructions are executed.

Third, the carry flag is used as a general-purpose flag that is acted on by
the BCC (branch if C-flag is clear, or 0) and BCS (branch if C-flag is set, or 1)
instructions. As with all of the 65C02’s “branch on condition” instructions,
BCC and BCS allow control of the program flow to be manipulated by the
state of a flag in the processor status register (in this case, the carry flag).

Zero Flag (2)

This flag is used to indicate whether the last data movement or arithmetic
operation involved a zero result. If it did, then the Z-flag will be set (1);
otherwise it will be cleared (0).

There are two branch instructions that examine the status of the Z-flag to
determine whether the branch should be performed: BEQ (branch if Z-flag is
1, that is, result was equal to zero) and BNE (branch if Z-flag is 0, that is,
result was not equal to zero).

Interrupt Disable Flag (l)

This flag is used to control how the 65C02 will react when the electrical
signal on its IRQ (interrupt request) pin is brought near 0 volts. Such an
interrupt can be generated by the Apple mouse or the //c’s two serial ports
whenever they are ready to send information to, or receive information from,

‘

2/ The 65C02 Microprocessor || 25

the //c. If the I-flag is set using the SEI instruction, then all IRQ signals that
may be generated will be ignored. If, however, the I-flag is cleared using the
CLI instruction, then the 65C02 will respond to IRQ signals when they occur
by beginning a special interrupt sequence that is described in detail below in
the section entitled “65C02 Interrupts.”

Decimal Mode Flag (D)

This flag is used to control how the 65C02 is to perform addition and
subtraction operations. If standard binary arithmetic is to be performed using
the ADC and SBC instructions, then this flag must be cleared to 0 using the
CLD instruction. As we saw when discussing the accumulator, in binary mode
bytes are treated as unsigned binary numbers from 0 to 255.

If, however, the D-flag is set to 1 using the SED instruction, all arithmetic
will be performed under the assumption that all numbers are stored in a
special decimal format. In this format, one byte is used to store exactly two
decimal digits from 0 to 9. The first digit is stored in the high-order four bits
and the other in the low-order four bits and the maximum number that can
be stored is 99. When arithmetic operations are performed, the results will
also be stored in this format.

Break Flag (B)

This flag is adjusted internally by the 65C02 whenever an IRQ (interrupt
request) interrupt is recognized by the 65C02 or a BRK (break) instruction is
executed. See the section below entitled “65C02 Interrupts’’ for more infor-
mation on these types of interrupts. When an IRQ interrupt is recognized,
then the B-flag is cleared to 0; if a BRK instruction is executed, then it is set
to 1.

Whenever an IRQ or a BRK interrupt is generated, the 65C02 begins to
execute the same program (its address is held at locations $FFFE and $FFFF).
It is often convenient, however, to determine what the source of the interrupt
was so that a different action can be taken for each source. This is most easily
done by having the interrupt-servicing program examine the state of the B-
flag.

Overflow Flag (V)

The overflow flag is used primarily when performing arithmetic operations
on signed numbers. Signed numbers are those that use bit 7 of a byte to hold
the sign of the number (1 for negative, 0 for positive). Bits 0 . . . 6 are used to
store the magnitude of the number in a special “two’s complement” format
that will be described in Chapter 4. If the result of an addition or subtraction
of two signed numbers is outside the range of numbers that can be stored in

26 [Inside the Apple //c

this format (—128 ... +127), then the V-ﬂag will be set to 1; if the number is
in range, however, the V-flag will be cleared to 0.

The V-flag can be explicitly cleared by using the CLV instruction. Surpris-
ingly, there is no corresponding instruction to explicitly set the V-flag.

The state of the V-flag can also be affected by using the BIT instruction. If
you “BIT” any memory location, then a copy of bit 6 of the byte stored there
will be placed in the V-flag.

Two branch instructions make use of the V-flag: BVS (branch if V-flag is 1)
and BVC (branch if V-flag is 0).

Negative Flag (N)

The negative flag is used to indicate the sign of the last value that was
directly transferred into the A, X, or Y register or that was put there by an
instruction that performed an arithmetic operation (DEX, DEY, INX, INY,
ADC, SBC, and so on). The 65C02 considers any byte that contains a one in
bit 7 to be negative.

Two branch instructions make use of the N-flag: BPL (branch on plus, that
is, N-flag is 0) and BMI (branch on negative, that is, N-flag is 1).

A BIT instruction can also be used to directly affect the state of the N-flag.
When you “BIT” any memory address, a copy of bit 7 of the byte stored there
will be placed in the N-flag. If bit 7 is used to hold the status of some condition,
then you can use BPL to branch if the status is off (0) or BMI to branch if it is
on (1). We will see in later chapters that the //c uses bit 7 of several locations
to represent the status of different hardware switches that can be controlled
by software.

The Stack Pointer—S

~ As we saw earlier in this chapter, the 65C02 uses the 256-byte area from
$100 to $1FF as a hardware stack. This is a “last-in, first-out”’ data area: the
most recent information stored on the stack is always removed first. Infor-
mation is usually placed on the stack by the “push” instructions, PHA, PHP,
PHX, and PHY, and removed from the stack by the “pull” instructions, PLA,
PLP, PLX, and PLY. (Information does not actually disappear after a pull, but
it will be overwritten as soon as more information is pushed on to the stack.)

The JSR (jump-to-subroutine) instruction also causes information to be
placed on the stack. When the JSR instruction is executed, the address of the
next instruction in memory after the JSR, minus one, is pushed on the stack
(high-order byte first). When the corresponding RTS (return-from-subroutine)
instruction is executed, this address is removed and the program resumes at
that address (plus 1).

2/ The 65C02 Microprocessor [| 27

The stack pointer register, S, is used to keep track of where in the 256-byte
stack area the bytes are to be pushed to or pulled from; it always points to
the next free space available in the stack area. When the system is first
initialized, S is set equal to $FF. Then, whenever a byte is pushed on the stack,
it is stored at location $100+ S and then the stack pointer is decremented by
one. Because S is decremented, the stack grows downward in memory. When
bytes are pulled from the stack, they are taken from the top of the stack
(location $100+ S+ 1). The stack pointer is automatically incremented each
time a byte is removed from the stack in this way.

Interrupt conditions and interrupt-related instructions also affect the stack
pointer (see the section below entitled “65C02 Interrupts” for a detailed
discussion of interrupts). When an interrupt is recognized, a two-byte address
and a copy of the processor status register is placed on the stack and the stack
pointer is decremented by three. When the corresponding RTI (return-from-
interrupt) instruction is executed, the three bytes on top of the stack will be
placed in the status register and the program counter and the stack pointer
will be incremented by three.

Here are the 65C02 instructions that directly affect the stack pointer reg-
ister:

® Inter-register transfer : TXS, TSX
® Push data on stack : JSR, PHA, PHP, PHX, PHY, BRK
® Pull data from stack : PLA, PLP, PLX, PLY, RTS, RTI

The Program Counter—PC

The program counter (sometimes called the instruction pointer) is the only
16-bit register that the 65C02 supports and is used to hold the address of the
next instruction to be executed. This address will normally be that of the next
instruction in the program, but not necessarily. There are several instructions
that can be used to manipulate the flow of the program and to pass control
to other parts of the program by adjusting the program counter accordingly.
These are the JMP (jump) instruction, which acts like an Applesoft GOTO, the
JSR (jump-to-subroutine) and RTS (return-from-subroutine) instructions, which
act like an Applesoft GOSUB/RETURN combination, the branch-on-condition
instructions (BCC, BCS, BEQ, BNE, BPL, BMI, BVC, BVS), and the branch
always (BRA) instruction. The program counter is also affected by any hard-
ware or software interrupt (BRK) and by the RTI (return-from-interrupt)
instruction.

65C02 Addressing Modes

A complete 65C02 instruction is either one, two, or three bytes long. The
first byte always represents the operation code (“opcode”) for the instruction

28 [Inside the Apple //c

itself and the remaining bytes (if any) represent the operand; if an operand is
specified, it is either an address (one byte or two bytes) or immediate data
(one byte). If the operand represents a two-byte address, then the first byte is
always the lower two digits of the four-digit hexadecimal address (the allow-
able addresses are in the range $0000 to $FFFF).

An address that is specified after